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The elastic response of a smectic-C elastomer to three deformations, namely imposed A, \,, and \_,, has
been modeled using a nonlinear theory of a nematic elastomer with embedded smectic layers, and with the
director tilt (in the x direction) at a fixed angle with respect to the smectic layer normal (z direction). The main
focus is the elastic response after any soft mode of the sample. It is found that the elastomer contracts in the
x direction under A, shear. On stretching parallel to the layer normal it is found that there is a soft mode that
acts to rotate the director toward the z direction. The deformation of the system after this soft mode can be
reduced to shear and elongation in the plane of the layers. We make predictions of the mechanical response of
the elastomer, in particular the length of the soft plateau and the asymptotic modulus for the elastomer when
stretched parallel to the layer normal. Finally, since monodomain Sm-C elastomers are made by the
deformation-induced alignment of polydomains, we describe these important systems. Qualitative behavior of
the model is then compared to existing experimental literature on the mechanical alignment of polydomains
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I. INTRODUCTION

Liquid crystal elastomers (LCEs) are polymer networks
formed by crosslinking liquid crystalline polymers. These
polymers are typically connected to rigid rodlike molecules
that distort the conformation of the polymer; for example, if
the rods are in the nematic phase then the conformation of
the polymer backbones is anisotropic. The large bulk modu-
lus of these elastomers in comparison to their shear modulus
dictates that they are volume conserving. They display sev-
eral remarkable properties, such as soft elasticity which will
concern us here. Soft elasticity refers to the ability of LCEs
to deform at no energy cost, and arises because the deforma-
tion can be performed by rotation of the director, and conse-
quently the anisotropic shape distributions of the polymers
[1-3].

Smectic liquid crystal elastomers are composed of liquid
crystalline polymers that form the layered smectic phase. It
differs from the nematic phase in that it has a very large
modulus, B associated with the distortion of the layer spac-
ing. These elastomers display highly anisotropic properties
because the layer modulus is much larger than the shear
modulus of the polymer network. There are a large number
of smectic liquid crystal phases, and the corresponding elas-
tomers display a wide variety of elastic properties. Smectic-
A (Sm-A) elastomers have their director along their layer
normal and have been shown both experimentally [4], and
theoretically [5,6] to behave as 2D rubbers when stretched in
the plane, whereas when stretched parallel to the plane nor-
mal they initially have an extremely high elastic modulus B.
After the strain passes a critical threshold the elastic modulus
falls to ru. By contrast smectic-C (Sm-C) elastomers have
their director at a fixed angle to their layer normal and are
believed to be elastically soft when suitably deformed [7-9].
For example when a negative xz shear is applied to an Sm-C
elastomer initially with its layer normal in the z direction,
and the in-plane projection of its director in the +x direction,
it can be softly deformed as shown in Fig. 1. The director
rotates on a cone about z, the unchanging direction of the
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layer normal. There are accompanying shears \,, and A, as
the rotation proceeds. For the case of imposed A, the rota-
tion of the director is complete for A,.=—(r—1)sin26/p.
Here r is the anisotropy of the polymer chains, 6 is the tilt of
the director, and p=sin?f+r cos’d. When the rotation is
complete, A,,=0. Important work has been carried out on the
mechanical properties of partially alligned Sm-C samples.
The first experiments [10] were on elastomers with aligned
layers but where the director tilts either parallel or antiparal-
lel to the direction of in-plane stretch imposed at second-
stage crosslinking. Later experiments [11] were on samples
where the director has a common direction, but layer nor-
mals take two directions thereby forming a chevron struc-
ture. When strains are imposed perpendicular to the director,
it reorients to accommodate the shape change. The corre-
sponding stress-strain relation changes slope when rotation
occurs showing that as in nematic elastomers, mechanical
properties are profoundly influenced by the redirection of
nematic order.

Experimental work on spontaneous distortions in Sm-C
elastomers related to the shape changes of Fig. 1 has been
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FIG. 1. Soft mode of an Sm-C elastomer as it is sheared. The
component of the director perpendicular to the layer normal rotates
as the soft mode is performed, as illustrated by the vector ¢ shown.
¢ marks the initial direction of c.
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carried out, for example a Sm-C monodomain can be heated
to the Sm-A phase, and undergoes a spontaneous shear dis-
tortion that is reversible on cooling back to the Sm-C phase
[12]. Theoretically the mechanical properties of a mon-
odomain could exhibit soft elasticity even when the macro-
scopic deformation applied is not one of the pure soft modes
allowed by symmetry. But in that case soft elasticity is ac-
companied by microstructure formation that results in a
wider set of deformations that are also soft [ 13]. Understand-
ing how the director and the layer normal respond to an
imposed deformation gradient in Sm-C elastomers are key to
understanding how the elastomer deforms. The competing
requirements of conserving the layer spacing and reorienting
the director to accommodate the imposed deformation gradi-
ent result in sympathetic shears. This picture is complicated
by the presence of boundary conditions at the clamps that
result in a complicated mix of deformation gradients.

The aim of this paper is to study the response of a Sm-C
elastomer beyond soft deformations. The effect of constrain-
ing boundaries, responsible for the formation of microstruc-
ture, is ignored, instead focusing on the physics of the mon-
odomain deformation. The effect of three different
deformations applied to a monodomain, chosen to have a
nonsoft response, are considered. Comparison is then made
to experimental literature by considering the alignment of
polydomain samples.

II. FREE ENERGY DENSITY IN SMECTIC-C
ELASTOMERS

To model Sm-C elastomers the following free energy will
be used [5,9]

f=3uTil) - Lo A €T+ 5B@ldg =12, (1)

where w is the rubber modulus, and B is the smectic layer
modulus. The first term is that of a rubber with only the
underlying nematic rubber free energy. The second is the
cost of changing the layer spacing from its equilibrium
value, d,. The mean square distribution of the Gaussian
polymer chains is described by the step length tensor
¢=5+(r—1)nn’. Experimentally, the value of B/u>>1 in
Sm-A elastomers [14]; consequently our main focus is
B/pu—. It is also assumed that volume is conserved, i.e.,
det(A)=1 as a consequence of the even larger bulk modulus
of the rubber, K. Additionally we assume here that the tilt
angle of the director with respect to the layer normal is rig-
idly fixed. The moduli are ordered as follows: K>B> u. In
this model layers are anchored strongly in the matrix and
thus deform affinely with it. The response of the layer nor-
mal, initially given by K, to the imposed deformation gradi-
ent A is k=A""-Kko/|A"7-Kg|. The accompanying layer spac-
ing change is given by d/dy=1/|]\""-Ko|, and the initial and
current directors given by n, and n, respectively. The layer
spacing expression along with det(A\)=1 for volume conser-
vation, are both highly nonlinear and render Eq. (1) into a
complicated form. Since the deformations are large the non-
linearities cannot be ignored and (1) has been shown to well
describe the complex, nonlinear distortions of Sm-A elas-
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FIG. 2. Imposed deformation; (a) elongation perpendicular to
the layer normal, (b) shearing perpendicular to the layer normal,
and (c) elongation parallel to the layer normal.

tomers [5]. The director and the layer normal are related by
the tilt angle of the director, 6 (typically <22°). It is conven-
tional to denote the direction of tilt by the unit vector ¢
which is in the plane perpendicular to Kk, i.e., ¢-k=0. The
director is then given by

n=K cos 8+ ¢ sin 6. (2)

The free energy density has the free vector ¢ to be minimized
over. Mathematically it is awkward to do this minimisation
in general because of the constraints on the direction ¢, and
the resulting Lagrange multipliers that must be calculated.

We show below how B and w separately enter the free
energy density, before eliminating the effect of changing
layer spacing (B— ). The main features of the Sm-C be-
havior can be exhibited in this limit of rigidly fixed layer
spacing.

III. EXAMPLE DEFORMATIONS

Three examples of imposed deformation are now consid-
ered to develop an intuition for the elastic response as shown
in Fig. 2. These three deformations were chosen to exhibit
the responses of Sm-C elastomers to imposed deformation
gradients, for their simplicity and for their experimental rel-
evance. The uniaxial extension experiments have been per-
formed on nematic elastomers, and the simple shear has been
used in the alignment of Sm-C elastomers. The director ori-
entation was chosen so as to, as far as possible, avoid any
softness of the deformation. In the first two cases analysed
here (imposed \,, and \,.) the layer normal remains fixed,
simplifying calculation of the vector ¢, as it must remain
fixed in the xz plane. In the last case of imposed A, the
director and layer normal move, but its motion can be sim-
plified. The axes used here are layer normal along the z axis
and c initially pointing in the x direction.

A. Imposed A,

This case is the simplest of the three illustrated in Fig. 2
and is analytic. The deformation gradient occurring as a re-
sult of the applied A, deformation is upper triangular, as the
director remains in the xz plane. Here the following defor-
mation matrix will be used
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}\xx )\x_v )\xz
A=[ 0 /(A \) Ay . (3)
0 0 A

el

The orientation of the director remains fixed during deforma-
tions of the form of Eq. (3). This is consistent with the analy-
sis of a Sm-A elastomer where the layer normal does not
move when a strain perpendicular to the layer normal is ap-
plied. Consequently, the components \,, and A, are zero.
These assumptions were confirmed by a numerical minimi-
zation of the free energy density. Substituting in the resulting
deformation tensor into the free energy density expression
together with

ny=n = (sin 6,0,cos 6) 4)

produces the following

1 1
1
f= EM()\ix"' 242 + )\gz + ;[p)\xz

T 7XX

— 20 =\ (r = 1)sin 20]2) +1BO, 12 (5)

where p=sin’6+r cos?. The Poisson’s ratios of a Sm-C
elastomer can be obtained from this free energy expression
by first minimising with respect to A, and then calculating
the small strain response in the z direction to an imposed x
strain. The result is the same as the Sm-A case

B+2u

= . 6
g B+4u (©)

Experimentally it is observed that B/ > 1. In keeping with
this it is now assumed that A_,=1 and Eq. (5) becomes (up to
additive constants)

11
f= %M(Ri et [P+ 30 = (= Dsin 29]2)-
XX r
(7)

On minimizing the free energy density Eq. (7) with respect
to N, the following is obtained:

(r—=1)(\,— 1)sin 26
2p '

Note that the sympathetic shear is of negative sign, i.e., it is
in the opposite sense to the tilt of the director. In a nematic
the opposite sign of shear (positive) would be expected as
the director rotates toward the extension direction. Here the
elongation in the x direction acts to extend the polymer
chains, whereas the compensating xz shear reduces their ex-
tent, thus lowering the energy of the system, and resulting in
a negative shear. An illustration of this is shown in Fig. 3.

Substituting the minimum values back into the free en-
ergy yields

N, = (8)

1
f=%u<l+)\—2+>\§x), 9)

XX

i.e., a 2D rubber elastic response, with an elastic modulus of
4, rather than the usual modulus against extension of 3u.
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FIG. 3. (Color online) Sympathetic shear strains resulting from
applying a uniaxial elongation in the x direction (lines labeled with
the appropriate model parameters). An illustration of the elastomer
is provided above the graph of the (r, 6)=(5,0.5°) case.

Suppression by the layers of contraction along z means,
since volume is constant, greater contraction along y and
hence the extra energy.

This analysis is only valid for extensional deformations
(A, >1). If the system were compressed, then theoretically it
would be soft, because the director rotates around in the
plane of the layers toward y, thereby shortening the elas-
tomer’s natural length in the direction of compression, see
the first four frames of Fig. 1.

If this stretch is applied using two clamps to stretch the
sample, then because of the sympathetic shear response mi-
crostructure will form. However, if it is not possible to form
the required microstructure to allow the sympathetic shear,
then the modulus of the sample will be different. If A =0 in
Eq. (7) then the system is even stiffer than the corresponding
2D elastomer, with an elastic modulus (5*f/ 92| \,=1) given

by
—1)%sin®26
(Mw) . (10)
4r

The measurement of this modulus would provide an indica-
tion of whether the system is able to form the required mi-
crostructure to lower its elastic modulus.

B. Imposed A,

This case has the same free energy expression as the im-
posed \,, case considered above. However, the sympathetic
shears are now being driven by a different matrix element.
As in the case above, the sympathetic shears will be a subset
of those that occur during the soft mode because the director
is now static. The deformation gradient tensor is taken to be
of the form

)\XX O )\XZ
A= 0 1A, O | (11)
0o o0 1

The free energy density is the same as Eq. (7). Minimization
with respect to \,, is required and results in a quartic equa-
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FIG. 4. (Color online) Sympathetic contractions resulting from
applying a simple shear in the xz component (lines labeled with the
appropriate model parameters). The dotted line shows the small
strain approximation (12). An illustration of the elastomer is pro-
vided above the graph of the (r, 6)=(5,0.5°) case.

tion for A,,. Whilst this quartic is soluble by radicals, the
solution does not provide much insight. Some information
about the nature of the solution can be gained by substituting
N\=1+€. Minimizing the resulting free energy with respect
to € results in

(r=1)\p sin(26)

_ . 12
T (= 1)2cos 40+ r(r+ 30) (12)

Note that € is negative, i.e., the sample contracts along the
direction of shear displacements. This is consistent with the
imposed A, behavior pointed out in the previous example.
The modulus in this case is given by

4p?

p(r—p)+3r+p" (13

For large N\, (typically A, ~5) it can be shown that the
sympathetic A, response behaves asymptotically as

2 1/3
N~ | —————————| - (14)
A (r—1)psin26

The slope of the nominal stress-strain curve tends to

2
p
—u, (15)
-

i.e., the sample always hardens as it is stretched. This result
can be related to the stiffness of the sample when stretched
along the z axis, calculated in the next section. An illustra-
tion of this behavior is shown in Fig. 4

If the layer normal and director are not fixed, then the
sample simply rotates, since a \_, component necessarily has
to be introduced into the deformation gradient.

Experimentally this deformation is difficult to apply be-
cause the region around the clamps must not contract. It is
also observed that the sample starts to buckle when large
shears are applied to it. However, the above example is im-
portant in the analysis of an imposed \_, because, by multi-
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FIG. 5. Sequence of gedanken shears and rotations to achieve
the maximal soft distortion () in response to z stretch, and then
subsequent nonsoft distortion to attain a final A.

plication of suitable rotation matrices, the two problems can
be related to one another, as we will now show.

C. Imposed A,

In this case the elastomer is initially soft, which compli-
cates the analysis here. Soft modes in response to imposed
\.. have been analyzed in detail elsewhere [6,9]; here we
first look for the end of the soft mode as a starting point for
the analysis. Note that the soft mode of a Sm-C elastomer in
this geometry contrasts to the response of a Sm-A elastomer
which has a very high modulus when stretched parallel to the
z direction, followed by an abrupt change in elastic modulus
from B to ru due to the transition from stretching the layers
to shearing them [5].

The first question addressed here is that of the final posi-
tion of the director after the soft mode has ended. In general
one would take the direction along which the elastomer is
being stretched, p (here z), and then maximize the quantity
p-R-A(£)-p, where R is a rotation matrix and A(£) is one of
the soft modes of the form §(§)=§l},/2'f5”2, where n lies on
the intersection of the unit sphere and a plane as described in
[9]. In the geometry currently under consideration, there is a
concrete sequence of gedanken deformations that this maxi-
mal soft stretch along z can be broken down into; see Fig. 5.
Since in-plane shear is essentially the only soft deformation
for Sm-C,it is clear that to obtain low cost deformation, the
director must rotate through 7 about z from its initial condi-
tion to the final state, as illustrated in Fig. 1 and as A, in Fig.
5. (The sphere mentioned above is one with the original layer
normal defining a north pole, and the plane is that such that
the circle of intersection with the sphere is the locus of n
making angle 6 with k;.) This in-plane soft deformation is
given [9] by

(r—1)sin 26 .
1 0 -———— cosa 0 —sina
A = Op Ro=| 0 1 0
sina 0 cosa
00 1
(16)

Then to have achieved elongation along the extension direc-
tion z, one must apply a subsequent body rotation R, (with
axis parallel to y) to the distorted body. It rotates the sheared
solid to the vertical position (Fig. 5 after R,). Thus an initial
z segment of the body clearly achieves its maximal soft N\,
component, stretch along z. The rotation must be by the same

021702-4



MECHANICAL RESPONSE OF SMECTIC-C ...

FIG. 6. (Color online) Extent of the soft mode N> and the final
angle of the director to the z direction at the end of the soft mode as
a function of the anisotropy, r, for 6=0.5¢.

angle «a as the soft shear angle, but in the opposite sense

=1 . (17)
p

The maximal soft deformation matrix for the system when
stretched parallel to the z axis is thus

tan o =—

Aot =Ra My
£ 0
Vp? + (r—1)%sin’26
= 0 1 0
(r—1)sin26 Vo2 + (r—1)?sin?26
- Vp?+ (r—1)%sin?26 p

Rotation has eliminated the shear N\, in A, in favor of the
other shear X\, in A . Also apparent is that the soft mode
ends when the stretch along the z direction is

(r—1)*sin*26
A\, = \/HT' (18)

Given that the body rotation « convects everything with it,
the angle of the director to the z axis simply becomes

-1
v= G—arctan[(r ) sin 20} =0+a. (19)

p
This angle is small for typical material parameters: for
6~25° and r~2, then y=3.24° which happens to be near
the r=2.2 where 7y vanishes (i.e., where the shear angle can
be identified with the tilt angle). In general it is not zero, so
the director is not in general aligned with the z axis. The
reason for the difference between the orientation of the di-
rector and the stretch axis is another manifestation of the
difference between the director angle observed in x-ray scat-
tering, Oy and the tilt of the elastomer under shear 6, as
shown theoretically in [8,15], and experimentally in [12].
An illustration of the angle between the stretch direction
and the director and the extent of the soft mode as a function
of the anisotropy, r is shown in Fig. 6. The same quantities as
a function of the tilt angle, 6 are shown in Fig. 7. These
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FIG. 7. (Color online) Extent of the soft mode A]>"* and the final
angle of the director to the z direction at the end of the soft mode as
a function of the molecular tilt, 6, for r=2.

analytical predictions have been tested by minimization of
the free energy density numerically, using the simplex algo-
rithm.

The route taken to this final state can be calculated nu-
merically by using a lower triangular deformation matrix.
The form of this matrix is enough to uniquely determine the
soft mode. Inclusion of upper triangular elements serve to
make the soft mode nonunique by allowing rotation of the
sample about additional axes. The free energy can be mini-
mized directly by using the simplex algorithm. The director
loops around on the surface of a sphere so as to maximize the
extent of the soft mode along the z direction (Fig. 8). Note
that during the soft mode the director, n, the layer normal, k,
and the stretch direction, z, are not coplanar. At the end of
the soft mode the three vectors are coplanar, and the director
lies in the xz plane. The subsequent sympathetic shears,
which are consequently reduced to just one off-diagonal el-
ement, are now calculated.

We now return to the simple scheme for envisaging de-
formation employed to find the soft mode. Deformation con-

FIG. 8. (Color online) Path of the director (dark gray/red) and
the layer normal (light gray/green) when the Sm-C elastomer is
stretched parallel to the layer normal. The sample in this case has
r=2 and 0=0.5°=28.6°. It is plotted up to A=2 here, and the soft
mode ends at \,,=~1.3. The arrows on the paths indicate the direc-
tion in which they are traversed as A\, is increased.
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tinues to be effectively shear and stretch in-plane which we
will again achieve via gedanken distortions and rotations. We
take the total deformation tensor from the initial state to be

A, 0 0
A=[ 0 A, 0 |, (20)
AZX O AZZ

where A, =0 since displacements in the x direction while
applying a o, stress leads to torques that counter the dis-
placement. Such shears are absent in deformations of nem-
atic elastomers for the same reasons [2]. After the soft mode
has finished then the deformation can be decomposed as fol-
lows in the limit B/ p—

é=§{'§2'52'§soft' (21)
-

The combination I=?£-)=\soft is just the original in-plane
soft deformation A, see Fig. 5, since a counter rotation,
R’=R_, has acted. A further (now hard) in-plane shear and
stretch (with volume conservation), \,, is then applied (since
these modes leave the layer spacing untouched):

S U
M= 0 I, 0. (22)
0 0 1

Thus, in this decomposition, the sheared state of Eq. (16), the
end of the in-plane soft deformation, is stretched in the x
direction and sheared in the xz plane. The operations of Eq.
(22) are elementary ones of Figs. 2(a) and 2(b), see also Fig.
5. The body is then rotated about the y axis by R, to reach
the final state in such a way that xz shear is eliminated in the
final state. The angle { is not, as before, simply the inverse
tangent of the shear since we have elongation A\, at the
intermediate step A, and since we are dealing with finite
distortions, they compound in a nonlinear way rather than
simply adding.

By equating the A,, component to zero it follows that the
required rotation angle { is

-1
an z=n, "7 Gnag- A (23)
and thus
A

o= —x—x s (24)

V1 + tan®¢
A= (25)

- - A’)CX '

A, =1 +tan?{, (26)

A tan £
= = (27)

V1 + tan?¢

It can then be deduced that
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1
Ay=—", 28
»E R 29
Azx == AxxVAgz - 1. (29)

The angle of the layer normal to the z axis can also be de-
termined

tan [ = \fA?Z -1, (30)

from which the director angle follows by subtracting 6.

Using Eq. (26) and Eq. (23) to fix the \,, component in
terms of A_. and \,, then the resulting effective simple shear
and elongation applied to the sample is

— 1
N 0 —VAZ-T1+ UL R
: p
A= :
27 oy 0
0 0 1

where the \,, component has been mixed into the xz entry.
The components of this deformation tensor can be substi-
tuted into the free energy density given in Eq. (7) resulting in

1 1 —~——
f=b4ki+;?+1+;DwAi—1

+ 11+ M) (r = Dsin 20]2). (31)

After the soft mode [when A__ is greater than the expression
of Eq. (18)], then \,, deviates from 1.

Asymptotically the nominal stress on the z face required
to extend the elastomer tends to

o~ u(p*rA... (32)

This expression reduces to that of the Sm-A elastomer for
6=0, and is also similar to the asymptotic modulus given for
the xz shear in the previous section.

The threshold that was observed in the Sm-A case is
clearly no longer present in the Sm-C elastomer. This is il-
lustrated in Fig. 9, which shows numerical calculation of
four nominal stress strain curves, again using the simplex
algorithm, for different tilt angles of the director and
anisotropies of the polymer chain distribution. The stress
strain curves show first a soft plateau at zero stress and then
a singular rise in the stress as the sample begins to deform by
shearing the smectic layers.

IV. POLYDOMAIN ALIGNMENT

Since liquid crystal elastomers were first fabricated, con-
struction of monodomain samples (single crystals) has been
important experimentally so that, for example, the elastic
properties of the material are not obscured by the effects of
the polydomain-monodomain transition. In nematic elas-
tomers the two principal methods of alignment are by apply-
ing a strong magnetic field during crosslinking [16], or em-
ploying a two stage crosslinking process, whereby the
sample is initially weakly crosslinked and then a second
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FIG. 9. (Color online) Four nominal stress-strain curves for an
elastomer with B/ u=60, (r,6) given on the relevant lines. An il-
lustration of the elastomer is provided above the graph of the
(r,0)=(5,0.5 case.

crosslinking stage is carried out with the sample under a load
[17]. For liquid crystal phases with more complicated order
such as the cholesteric and smectic phases, a more involved
alignment process has been developed. For Sm-A systems, a
two-stage crosslinking procedure is carried out, just as for
the nematic case, but during the final stage the aligned
sample is cooled into the smectic state. In Sm-C elastomers it
is particularly difficult to obtain a monodomain, because of
the angle between the layer normal and the director. If the
sample undergoes a second crosslinking whilst under
uniaxial load, then a chevron microstructure results [18].
Two ways of applying a mechanical deformation to obtain an
Sm-C monodomain have been reported. A second uniaxial
elongation can be applied to the chevron structure at a speci-
fied angle to the layer normal. This has the effect of remov-
ing all but one of the layer orientations [ 19]. Another method
is to apply a shear deformation to the chevron texture, which
again has the effect of selecting out a particular orientation
for the layer normal [20]. Here we look at the effect of
uniaxial deformations and shears on a collection of domains
to see if the applied deformation can align the directors.

A. Alignment by uniaxial extension

This method of formation of monodomains was employed
experimentally in [19], where a sample was reoriented using
a secondary elongation \,=1.6. The geometry of this method
is indicated in Fig. 10. To investigate this method of align-
ment, the effects of a uniaxial elongation on a collection of
domains treated independently and with the orientations of
director and layer normal as shown in Fig. 10 was investi-
gated. The layer normals, K, sit on a cone about the common
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FIG. 10. Polydomain Sm-C elastomer with aligned directors as
shown, but with all possible layer normals that maintain the correct
tilt angle with respect to the director. The polydomain is aligned by
stretching perpendicular to a particular layer normal as shown, that
is at an angle of 90°—6 to n.

director n. The deformation gradient used was a lower trian-
gular matrix

A, O 0
A=| Ay VWAL O, (33)
A A A

X zy iz

where the Cartesian axes are as shown in Fig. 10. Note that
this matrix would not be permitted for a monodomain with
an imposed \,, as discussed in Sec. III. However, because
we are considering a domain within a polydomain sample
more freedom in the deformation gradient has been included.
The \,, component was then imposed and the remaining
elements and the angle of the ¢ vector in the plane perpen-
dicular to k minimized numerically, using the simplex algo-
rithm. The results projected onto the xy plane are shown in
Fig. 11. Note that the paths of the director move around on
closed loops, whereas the layer normals are all attracted to-
wards the z axis. The robustness of this result was checked
by reducing the number of elements in the deformation gra-
dient that are minimized over. The results do change mark-
edly depending on which of the elements (A, N .\, \,.)
are permitted to relax. If one of these elements was con-
strained then the layer normal quickly reaches the xz plane,
but takes some time to move up to the z direction. However,
if two or more elements were constrained then the results
change drastically. The layer normal moves towards the y
direction, and the director position is broadly distributed
around this direction. This dependence should be explored
further in a more detailed model of polydomain reorienta-
tion.

Typically, rather large strains were required to realign the
system, approximately A=8 or more. This is considerably
more than those reported in [19]. It is also larger than the
strain of A=4 reported in [21] to untwist a helical superstruc-
ture by a uniaxial strain in a smectic-C * elastomer. The dis-
crepancy between these results may be explained by the ad-
ditional constraints on neighbouring domains in the
polydomain due to compatibility. Alternatively, a micro-
scopic redistribution of the macroscale strain may occur as
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a)

0.4

FIG. 11. (a) Paths of the layer normal and (b) paths of the
director projected onto the xy plane, as the system is realigned. The
value of the deformation A, along a particular path is marked, and
contours of equal \,, highlighted. Corresponding paths in each fig-
ure are labeled a—e. Here r=2, #=0.5°, and B=60.

the polydomain is elongated. The domains that are close to
the fully aligned state take up a much smaller fraction of the
macrostrain than the neighbouring domains that are further
from being in the fully aligned state. The latter deform at
lower energy cost and in taking a larger fraction of the mac-
rostrain suffer much larger microscopic (local) strains.

B. Alignment by simple shear
1. Experimental geometry

Shearing polydomain samples using a rigid frame has
used experimentally to construct monodomains in [20]. This
is a two stage crosslinking process where a shear angle of
around 30° (=arctan\,) is applied before the second
crosslinking, corresponding to a simple shear of A\, ~0.5,
followed by an annealing cycle. Here the initial distribution
of layer normals is shown in Fig. 12. In this example it was
possible to use a much more constrained deformation gradi-
ent: A=0+\, Xz, only minimizing over the angle of ¢ per-
pendicular to the director.

Since the effect of the shear deformation is rotation about
the y axis it was found that half of the layer normals rotate to
the north pole on the unit sphere, and half to the south pole.
We illustrate the two halves separately here.
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FIG. 12. Polydomain Sm-C elastomer with aligned directors as
shown, with all possible layer normals on a cone that maintain the
correct tilt angle with respect to the director. The polydomain is
aligned by shearing perpendicular to the director as shown.

The paths of the layer normals to the north pole are shown
in Fig. 13(a). We again see in this figure the large values of
the deformation required in this approximation to align the
monodomains. Ultimately the layer normals are all migrating
to the north pole, with the directors tilted toward the x direc-
tion.

The longer paths of the layer normals to the south pole are
shown in Fig. 13(b). The associated director paths are far
more complicated, but eventually end up tilted along the —x
direction. The symmetry of the director and layer normal (

a) b)
1*]{:; N 1
0.98 - 0.98
ggi* T 0.96
sl 1094
0.92+ - 0.92
0.9+ - ’
0.88 - £-L- \ Hl 09 \ \ ! \ !
—0.5—-0.25 0 0.25 0.5 —0.3—0.15 0 0.15 0.3
) d) "
17 —
ny
0.5 0.5 |
0 0k _
—0.5 —0.5+ m
_1 _1, | | _
—-0.8-04 0 04 0.8

Ty

FIG. 13. Paths of the layer normal and director, respectively,
projected onto the yz plane, as the system is realigned by a shear
deformation indicated in Fig. 12, (a) k to north pole, (b) corre-
sponding reorientation of n, (c) k to south pole, and (d) correspond-
ing reorientation of n. The value of the deformation \,, along a
particular path is marked. Here r=2, 6=0.5¢, and B=60.
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FIG. 14. Polydomain Sm-C elastomer with aligned directors as
shown, but with all possible layer normals on a cone that maintain
the correct tilt angle with respect to the director. The polydomain is
aligned by shearing perpendicular to the layer normal as shown.

n—-n and k——k) dictates that the north pole and south
pole populations, and their associated directors are equiva-
lent. Note that the discontinuity in the director path in Fig.
13(b) occurs because the directors jump from n, to —n, in
order to reach their final position.

Whilst the layer normals can respond here without the
need for sympathetic shears, the division of the population
into two halves may explain the need to anneal the sample
experimentally to obtain monodomains.

2. Alternative geometry

The problems of the geometry described in the previous
section can be avoided by changing the geometry of the
shear performed, as illustrated in Fig. 14. This geometry has
the advantage that some of the domains can deform softly,
and that all of the layer normals are swept to the north pole
on the unit sphere. An illustration of the realignment from
the deformation gradient A=6+X\ Xz is shown in Fig. 15. It
can be seen from the figure that those domains that are soft
reach full alignment extremely quickly, in a shear of less
than 1, whereas those requiring a large movement of the
layer normal again have to undergo extensive shearing to
reach the aligned position.

V. DISCUSSION

The calculations presented in this paper based on model-
ling a Sm-C elastomer as a nematic with embedded layers
and with restricted director motion suggest many interesting
experiments. However, even without soft elasticity, the elas-
tic behavior of Sm-C elastomers has rich behavior, with the
possibility of complex microstructures if rigid clamps are
used to impose deformations. In other liquid crystal elas-
tomer systems it has been observed that whilst the formation
of a microstructure may affect for example the birefringence
of the sample dramatically, it does not much increase the
elastic stiffness. We anticipate a similar behavior in this sys-
tem. The soft modes permitted by the formation of micro-
structure have been analysed in Ref. [13], where it is proven
that stretching parallel to the layer normal is not a soft de-
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FIG. 15. (a) Paths of the layer normals and (b) paths of the
director projected onto the xy plane, as the system is realigned in
the geometry of Fig. 14. The value of the deformation A, along a
particular path is marked, and contours of equal A, are highlighted.
Corresponding paths in each figure are labeled a—e. Here r=2,
0=0.5¢, and B=60.

formation because of the restriction of the compatibility of
the microstructures. An experimental test of soft elasticity,
and the associated microstructure have also been suggested
in Ref. [13].

The analysis of the aligning polydomain samples shows
that the model used here is consistent with the experimental
procedures of aligning Sm-C polydomains. However, it does
raise the question of why such large deformations are re-
quired in comparison to experimental alignment. It also il-
lustrates a problem, in theory at least, with the current geom-
etry of the shear induced alignment: The population of layer
normals is split into two.

It is well known that the low symmetry of the Sm-C phase
allows a polarization direction to be defined from the cross
product of n and k. The deformations reported in Secs. III A
and III B do not change the orientation of the polarization.
The polarization is rotated in the soft part of the deformation
of Sec. III C, but remains invariant after the soft mode has
finished. The piezoelectric properties are thus intimately re-
lated to the soft deformation, where large reorientations of
the director and layer normal occur. These reorientations also
occur in the polydomain deformations considered in Sec. I'V.

VI. CONCLUSIONS

The three deformations considered in Sec. III illustrate
how a Sm-C elastomer responds to a variety of deformations.
The initial soft response is a consequence of the freedom of
the director, which can rotate around the layer normal. After
the sample reaches its maximum soft extension the director
then has no freedom and is a slave of the layer normal. The
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response of the Sm-C elastomer is then principally due to the
reorientation of the layer normal away from the direction of
maximum elongation. Once the soft mode has been ex-
tracted, the only distinct deformations that the elastomer can
undergo are elongations perpendicular to the layer normal,
and shears perpendicular to the layer normal. An example of
how a deformation can be decomposed was given in Sec.
oI cC.

Various testable experimental predictions can be made of
the theory in this paper, for example on stretching a mon-
odomain parallel to the layer normal specific features of the
stress strain curve can be calculated. The extent of the soft
plateau is predicted by Eq. (18), as well as the asymptotic
modulus of Eq. (32) and its equivalence to the asymptotic
shear modulus in Eq. (15). Two values for asymptotic modu-
lus for a uniaxial stretch perpendicular to the layer normal

PHYSICAL REVIEW E 77, 021702 (2008)

were predicted, depending on the freedom of the system to
form microstructure.

The model of Sec. II was compared to experiments on the
alignment of polydomain samples by calculating the re-
sponse of the layer normal and director in a set of indepen-
dent monodomains. The results are qualitatively consistent
with the experimental alignment, however it was found that
larger strains than reported experimentally are required. An
alternative geometry for the alignment of Sm-C polydomains
was also suggested in Sec. IV B 2.
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